
Chapter 4

Comet architecture for
web applications

Sergi Baila and Vicenç Beltran

Abstract

The last two years have seen a revolution on the way web applica-
tions are developed. The popularization of new techniques under the
acronym AJAX (Asynchronous Javascript and XML) has made web
applications a lot more interactive and closer to desktop applications.
At the core of this new approach is the ability of a web page script to
send requests to the server without user prior action. This breaks one
of the limitations of web applications and the HTTP protocol, and
now a web application can trigger an asynchronous partial page up-
date which makes applications a lot more responsive and interactive,
and also hides latency effects.

This technology has evolved and has become quickly a new foun-
dation for developing web applications which are closer to desktop ap-
plications. Web mail, calendars, instant messaging... Also, common
bussines software is starting to be developed as a web application, even
on intranet scenarios. However, AJAX is still limited by the under-
lying HTTP protocol and it’s request/response cycle. On this known

105



106 CHAPTER 4. WEB PUSH

client-server architecture the browser is the one which always initi-
ates actions (send requests). Desktop application frameworks, based
mainly on the MVC software pattern, implement GUIs which are based
on an event-response model. Events can be fired on the client side but
also on the server side. Web applications face a significant problem
here. Perhaps even bigger than common desktop applications which
tend to be single user whereas web applications are starting to be de-
signed from the beginning as multi user applications. So the need for
a server propagated event model is more necessary.

Comet is a new approach which uses an open idle connection,
mainly unused, until there’s a need for the server to push information
to the client. This allows the push of events from the server to the
client, so the gap between desktop applications and web applications
is further reduced. But keeping an open connection per client breaks
classic servers’ scalability where you have one thread per connection.
New server implementations based on asynchronous I/O are already
available, which can handle thousands of connections with just a pool
of threads.

This chapter introduces AJAX and Comet architectures, the new
frameworks, and the servers which implements them on top of asyn-
chronous I/O. We also analyze the new problems introduced by these
technologies. AJAX relies completely on JavaScript, the DOM model,
CSS... all web technologies which are now starting to see standards
compliant products. Portability is one of the first problems encoun-
tered by an AJAX developer even between minor revisions of the same
browser. Also, usability of web applications suffers from the AJAX ap-
proach as existing mechanisms for disable people aren’t prepared yet
for this new technique.

4.1 Introduction

On February 18th 2005 Jesse James Garret published a short article[1]
on his company website coining a new buzzword on the internet world.
No one suspected that essay would be seen later as the first milestone
of a revolution on the way we understand web applications. There was
no new technology, because the ingredients were present for some time,
nor there was no new product. Instead he pointed to existing products



4.1. INTRODUCTION 107

like Google Suggest or Google Maps. But that short name, AJAX, was
rapidly spread among technological publications, blogs and sites.

But that was just the name. Most people, me included, had the first
encounter with the new technology and a glimpse of the possibilities
behind with a sub project from Google called Google Suggest (back in
2004). It was a simple product, just the google page with a twist added:
as soon as you start typing the web page started to show suggestions
of searches along with estimated result count. So you typed ”car re”
and google suggests ”car rentals” but also ”car reviews” and so on.
Most non technical people saw it’s speed and ease of use. We technical
people were amazed as how it broke the classic HTTP request response
and full page reload mechanism.

The magic behind relates to the XMLHttpRequest object, which
was created by Microsoft (as the ActiveX object XMLHTTP) and
later (2002 and beyond) was implemented on Mozilla and some other
browsers. This object allows to send an HTTP request and retrieve
the response as an asynchronous javascript method call. This is what
Google Suggest uses to send a request to a server each time there’s a
keystroke and then parsing the HTTP response.

So the evolution of the usage and impact of this technology has
been somehow exponential. It took nearly four years to reach a side
project on google, then some other sites started using similar effects
(GMail, Google Maps, Flickr, ...) and a name was adopted on 2005.
That same year saw the explosion of the technology. This can be
considered the first milestone of the future web applications.

There has been always a clear gap between web applications and
desktop applications. Before 2005 the answer to the question ”do
we need a web application or a desktop application?” was easily an-
swered because web applications were very poor and the only advan-
tage was that they are distributed and easily available applications
with a very thin and common client. Then came AJAX and appli-
cations like GMail which broke the limitation of the full page reload
model based on the HTTP request response model. It was not the first
step nor the last, but an important one. The HTTP protocol was not
designed as a foundation of general purpose applications. Actually,
it was not designed with any application on mind, even classic web
applications. One of the first important limitations resolved in the
past was the stateless property of the protocol. Today with the use



108 CHAPTER 4. WEB PUSH

of cookies or URL rewriting, and with every web developer framework
supporting sessions, this seems an easy task. We are here to take a
look at the next step to narrow the gap between desktop applications
and web applications: Comet or how can you build a event-based web
application.

4.2 Background

In this section we provide the necessary background information for
those not familiarized with web technologies. Some concepts of the
HTTP request response model are presented. Then we introduce the
JavaScript environment available on web browsers and we dive into
AJAX as the precursor technology for Comet.

4.2.1 HTTP model

The Hypertext Transfer Protocol is a communications protocol de-
signed mainly for the retrieving of HTML pages and accesory elements
(CSS pages, images, etc.). It is a request/response client/server proto-
col. That means that the model is clearly and strictly defined[2]: the
client (browser) sends a request to the server which reads the whole
request, processes it and returns back a response (see figure 4.1). An
HTTP client (known as the user agent) establishes a TCP connection
on port 80 (the standard one, but could be any) of the web server in
order to send the request and retrieve the response. The server listens
to that port and can serve multiple clients simultaneously.

The HTTP model has several limitations for developing a web ap-
plication. It is a stateless protocol, bonded to a strict request/response
cycle. The stateless problem was solved with the use of cookies or
URL rewriting to keep a session between the client and server. Until
recently, that was the foundation for developing web application, and
is what we call here the classic model (figure 4.1). On this classic
model each time there was an action from the user the browser sent
a request to the server which resulted on a new page loaded. This is
what we call the full page reload model. Given current network la-
tency, even on a local area network, is very difficult to develop a web
application with the same funcionality as a desktop application. We



4.2. BACKGROUND 109

Figure 4.1: Classic HTTP model

will see how AJAX solves this and brings us the next model.
Another problem arises with a Comet architecture that we will

explore on a next section and is introduced by a HTTP protocol limi-
tation. The protocol [2] limits (by suggestion) the number of simulta-
neos connections from a user agent (browser) to the server to just two.
Using new techniques like HTTP pipelining and a classic or AJAX
model this is not of much concern. But with a Comet model using a
permanent connection there’s just one left.

4.2.2 JavaScript

JavaScript is nowadays a real distributed execution environment, be-
ing the standard language for script execution inside web pages. Its
real name is ECMAScript[3] and its evolution is tightly close to that
of the web browsers. This scripting language allows, within a browser,
to manipulate most of the components of the web page (the document
structure via a DOM(Document Object Model)[4] interface). It is a
quite powerful language which not only can manipulate the Document
Object Model but also can be used to listen on events, use it asyn-
chronously, parse XML and even send HTTP request from within a
web page without triggering a complete reload (this is the base for
AJAX).



110 CHAPTER 4. WEB PUSH

Figure 4.2: AJAX HTTP model

4.2.3 The AJAX model

For years web developers had faced the problem of having a full page
reload every time they wanted to get or set new data to or from the
server. But the advent of the XMLHttpRequest object and it’s easy
asynchronous usage led quite rapidly to a new breed of web applica-
tions. There was no more a synchronous and closed request and re-
sponse cycle. We can now have a request sent on the background which
response triggers a partial change (thanks to the ability of JavaScript
to manipulate the page through the DOM). We can have then partial
page updates, background server communication and requests made
by programming logic and not subject to user interaction. We will call
this the AJAX application model as seen in figure 4.2.

The AJAX acronym [1] stands for Asynchronous JavaScript And
XML. The original concept was suposed to use XML as the language to
encapsulate the response where the JavaScript has the ability to parse
it and modify the page state and contents via the DOM interface.
Some applications use that model, but most of the time developers
use a simpler and stripped down model where the response is just
HTML (partial page) and the action to do is just replace some part of



4.3. INTRODUCTION TO COMET 111

the page. Also a common usage is encapsulating JavaScript code on
the response so the server can trigger any event on the page. All of this
work has been greatly simplified with the development of JavaScript
frameworks like Prototype or Dojo.

4.3 Introduction to Comet

As J.J. Garret coined the word AJAX there was also a blog post from
Alex Russell [5] where he tried to follow the same path coining the
Comet term to refer to the possibility of the server to send events
to the client without having to wait for a request from the browser
to arrive. Also as with the AJAX term, there were prior works on
the area to solve the problem of a web application being unable to
receive asynchronous events from the server. We’re just referring to
this milestone as a signal of the maturity of the idea.

The reason for this need was actually a consequence of the exit
of the AJAX architecture. A great number of new highly functional
web applications were developed with AJAX and both developers and
users wanted to push developments further [6]. But as interactive
it was an AJAX application it lacked a core mechanism from desktop
application: real time updates. Developers notice that it was necessary
to propagate events from the server to the client in order to have an
event-driven web application.

The problem again was the HTTP protocol. It’s a client-server
protocol, without option to the server to contact the client. Also,
given the diversity of networks and connections between browsers and
servers, building any mechanism for the server to open a connection
to the client is out of the equation.

So there’s only one solution possible (without severe modifications
of the underlying protocol). To have an open connection idle just
waiting for an event on the server (any Comet client should have one
then). So when the server has to send an event to one, some or all
of the clients, it just uses the open connection (which is a standard
HTTP connection). You can see figure 4.3 for a diagram of the Comet
model with an HTTP streaming connection technique. The beauty
of the solution is that it works. And works without modification of
clients, servers, protocols, etc. Unfortunately, the problem introduced



112 CHAPTER 4. WEB PUSH

Figure 4.3: HTTP streaming Comet model

is of a different nature. The servers suffer from a scalability problem
with this architecture. [5] [7] [8] [9]

4.3.1 Comet architecture

The tradicional implementation of web servers, specially an application
server (like a JavaEE server) uses a pool of threads to manage incoming
connections. When a new connection arrives it’s established and a
thread from the pool is assigned to the connection. Request is read,
code is executed and a response is generated and sent. Then, the
thread returns to the pool. This is designed under the assumption that
requests are short in duration but intensive in computing resources.
But a Comet connection is established and is expected to be long
in duration (can be several minutes) and very low CPU or memory
intensive. The connection is only required for sending events to the
client and just keep the connection open.

A classic web application can handle easily on the order of tens
of thousands of simultaneous users, because users are not sending re-



4.3. INTRODUCTION TO COMET 113

quests all the time. So the number of active connections on the server
is always a fraction of the users of the application at any given time.
With a Comet architecture each user on the system is an open connec-
tion on the server and a thread (with a classic model) which is locked
to the opened connection. Even if it’s not doing something, any server
has problems managing tens of thousands of threads.

The servers need to be redesigned around this new problem. The
solution comes from a know mechanism, asynchronous I/O, which has
existed in modern operating systems for a log time. C programmers
know it as the select() or poll() system call. Java, for example, has
support for it since version 1.4 with the introduction of the java.nio
packages. [10] [11]

The new design decouples the one to one relationship between con-
nection and thread. There’s also a thread pool, but threads are also
used to process active connections, not connections which are not han-
dling data. Of course, developers of server side components need to do
some modifications, but they’re only needed on the comet handlers.

Besides scalability on the server the Comet architecture introduces
another subtle problem on the client side. The HTTP protocol [2]
limits on 2 the number of simultaneous connections to a server. Using
at least one for a Comet connection leaves the whole page with just
one connection. As the page is probably using the AJAX model it’s
obvious that a complex or simply slow response would block all the
other connection and leave the page unable to send any other request
as we have the two connections busy: one for the comet connection and
another waiting for the slow reponse to an AJAX call. So this is nearly
impossible to circumvent but it can be alleviated. One necessary step
is to stream all Comet communication to the same and only connection
as no page can afford to have the two connections busy on different
components.

We’ve seen that the Comet architecture posses a series of challenges
both on the server and the client. We are now presenting the internal
details and work done on the model.

4.3.2 Bayeux protocol

As a non standarized architecture Comet faces significant interoper-
ability problems. Actually there are as protocols as implementations.



114 CHAPTER 4. WEB PUSH

Some of the major names behind certain libraries and servers are push-
ing for a standard protocol of communication between a Comet client
(JavaScript library) and a Comet server component. The result of
this is the Bayeux protocol [12] with the Dojo Foundation behind it.
There’s also work in progress from the authoritative source W3C for
HTML 5 server sent event listeners [13] but without any real work
impact yet.

The lead person behind Bayeux is Alex Russell from Dojo which
guarantees a certain level of notoriety for the protocol. As he states in
his first post [?] about Bayeux: ”One of the biggest problems facing
the adoption of Comet is that it’s, by definition, not as simple. It’s
usually not possible to take ye-old-RESTian HTTP endpoint and sud-
denly imbue your app with realtime event delivery using it unless you
want your servers to fall over. The thread and process pooling mod-
els common to most web serving environments usually guarantees this
will be true. Add to that the complexity of figuring out what browsers
will support what kinds of janky hacks to make event delivery work
and you’ve got a recipe for abysmal adoption. That complexity is why
we started work on Bayeux.”

As they define it: ”Bayeux is a protocol for transporting asyn-
chronous messages over HTTP. The messages are routed via named
channels and can be delivered: server to client, client to server and
client to client (via the server)”. The protocol specification is in a very
initial stage but has seen some support from the community which see
it as a good way to push the architecture support and ease of devel-
opment further.

The protocols tries to address the main problems associated with
the Comet architecture. It uses JSON (JavaScript Object Notation)
as the data interchange format to define the messages. Those mes-
sages are clearly defined on the specification and cover all the low
level technical details needed as the handshake, connection negotia-
tion, channel subscription, reconnection, etc. The standarization of
the messages allow the development of interoperable client libraries
and server components. Further, it ensures that key concepts like
negotiation and reconnection are taken into account even for simple
developments. The protocol also introduces a versioning system which
allows to negotiate between client and server for a preferred protocol
level in the same way as the HTTP negotiation works.



4.3. INTRODUCTION TO COMET 115

A key concept on the protocol is the multiplexing of different end-
points for comet components via a mechanism of channels. Each mes-
sage sent with the protocol has a channel destination, which helps
alleviate the two connection limit problem of HTTP. So having differ-
ent server components accessed via Comet no longer wastes multiple
connections but just one. It also helps server components to clean up
and separate things. Another helpful introduction is the identification
of each client with an autogenerated id, much the same way as an
HTTP session id.

Another advantatge of a standard protocol is the support for mul-
tiple connection models and a negotiation protocol. The Comet ar-
chitecture is really a hack over the limitations imposed by the HTTP
protocol, so different connection methods are not only necessary but
desirable to support as many clients as possible. We’re going to take
a look at the different Comet connection models.

4.3.3 Comet connection models

We’ve seen that a Comet architecture needs somehow a permanent
connection to the server in order to be able to receive server generated
events. But the handling of this connection can be different on the
way is managed mainly in the client side but also affecting the server
side. Choosing the right one is not an easy answer [9].

The first one and the first used before the advent of Comet or even
AJAX is the polling connection model (figure 4.4). This can’t really
be considered a Comet model because it’s not receiving the event when
it happens but we’re incluing it here as a base idea which has been
used in the past and is a perfect example of an scenario where Comet
can really help.

Of course this model has a clear scalability problem. As it has
not the problem of keeping an idle connection, the number of polling
request received on the server can be extremely high with a high fre-
quency value which will be desirable in order to make the application
responsive. This model can work with a small number of users even
with an update every 2 or 3 seconds. This model also has other draw-
backs. There is an overhead of a new request and response. Also,
probably the main problem, depending on the application usage some
or many of the connections could be empty, just the client asking the



116 CHAPTER 4. WEB PUSH

Figure 4.4: Polling connection model

server for events and getting a negative response. This overloads the
server and the network for nothing.

Long polling is an evolution of this technique which solves the
problem of the void requests because the server only responds when
there are data to. Meanwhile, the connection is just waiting. You
can see on figure 4.5 that the model just sends a request waiting for
data on the server which also waits until there’s some event. So the
requests are not returning void never, but you have on average as many
connections as clients on that page.

As this model solves the void response problem it may introduce
an scalability problem on those servers which block on the request and
have a classic 1:1 mapping between threads and connections. That’s
because if you want your application to be able to scale to tens of
thousands (or more) simultaneous users you will have at least as many
connections on the web application. So, for example, having 10.000
users on your application means you will have 10.000 AJAX connec-
tions because of your long polling model. That on a classic server
translates to 10.000 threads just waiting (sleeping) on each connection
doing nothing but wasting resources. Even if your OS, TCP/IP stack
and so supports that it’s unlikely your application server do. Fortu-
nately, new servers (Grizzly [14]) and revisions on old ones (Jetty [8],



4.3. INTRODUCTION TO COMET 117

Figure 4.5: Long-polling connection model

Tomcat, Apache) implement what’s called Asynchronous Request Pro-
cessing [14] which is based on non blocking I/O, a mechanism found
on recent revisions of OS and libraries [15] [10].

Of course this isn’t the perfect solution. If the server is pushing
events fast enought you will find yourself in a similar scenario as with
the polling model where you have several connections and a big over-
head for each request/response cycle. Also both models suffer from
the network latency specially as they need to send a new request for
each response (event) received. There’s also some bandwith wasted on
the multiple requests.

This leads us to the third model called HTTP streaming [16], a
model similar to long polling but without closing the connection even
after getting a response (see figure 4.6). The trick here is to use a
transfer mechanism from HTTP [2] called chunked transfer encoding,
which allows to send a response build up of blocks of data (chunks)
without knowing the amount of data and lenght of each chunk in
advance. This fits exactly to a series of events on the server which
need to be propagated to the client without knowing in advance the
number of events, the lenght or most important when they will happen.
This model greatly helps leveraging the network usage as eliminates
the overhead of multiple requests and reduces the latency because the



118 CHAPTER 4. WEB PUSH

Figure 4.6: HTTP streaming connection model

response can be sent without waiting for a request to end.
Even HTTP streaming is of course not exempt from caveats. Not

only the server should support thousands of connections with a limited
number of threads on the pool, on big scenarios you can find yourself
with too many events which can’t be correctly propagated to the clients
because of network congestion. So some kind of event throttling should
be considered.

Surely there are also some challenges that need to be addressed.
For example even with the HTTP streaming connection model there’s
no way that the client can send events to the server on the opened
channel. A bit ironic that the standard way of communication doesn’t
work, but in this case is more a limitation of the XMLHttpRequest
JavaScript construction that needs a complete request before starting
the transaction.

4.4 Scalability issues

There’s no extensive work on the AJAX and Comet impact on perfor-
mance in web environments, and existing work has very preliminary
results [17]. Even without extensive experimental evidences the one



4.5. COMET FRAMEWORKS 119

to one mapping between connections and threads doesn’t seem the
best idea. And not only Comet HTTP streaming or long polling con-
nection models benefit from it, some testing indicates that certainly
most kinds of web application can benefit from it. J.F. Arcand, one of
the engineers behind Sun’s Grizzly server, has done [18] some syntethic
test and real benchmarks over Grizzly asynchronous request processing
module based on Java no blocking library java.nio. The throughtput
of static files and simple JSP and servlets is quite the same (see figures
4.7, 4.8 and 4.9) but a classic connector (Tomcat Catalina) needs a 500
threads pool to match a 10 threads pool on a ARP connector. Testing
the maximum number of users that a website can handle (figure 4.10)
with a maximum response time of 2 seconds on 90% of request and an
average think time of 8 seconds show a clear winner of the non block-
ing model because there is less context switching and more available
memory with the far lesser number of threads of the second model.

4.5 Comet frameworks

As the AJAX and Comet technologies evolve and popularize we see an
increasing number of frameworks appearing. Actually, the number of
AJAX frameworks is growing very quickly [19], perhaps because it’s
quite new technology and the market hasn’t done the natural cleaning
for the best ones. Anyway just a very small subset of this frameworks
support Comet so we’re centering on the most popular ones. We will
first take a look at some of the developer libraries to implement Comet
solutions. We will introduce Pushlets, a combined library which uses a
client JavaScript component and a Java servlet for the other side. As
a different example, Dojo is a more general purpose framework written
completely in JavaScript without server side components. The Comet
part is solved implementing the Bayeux protocol.

We will then introduce three of the server which implement some
kind of asynchronous request processing using non blocking I/O. Griz-
zly from Sun is the web container for their JavaEE server GlassFish
and is built from the ground thinking on asynchronous request pro-
cessing. Jetty is a very popular servlet and JSP container which was
one of the first (if not the first) to implement a solution with its Con-
tinuations mechanism. The newest Apache Tomcat version 6 includes



120 CHAPTER 4. WEB PUSH

Figure 4.7: ARP 2k file static
performance

Figure 4.8: ARP 14k file static
performance

Figure 4.9: ARP 954k file static
performance



4.5. COMET FRAMEWORKS 121

Figure 4.10: ARP maximum number of simultaneous connections with
2s response time

an ARP connector.

4.5.1 Client libraries

”Pushlets are a servlet-based mechanism where data is pushed directly
from server-side Java objects to (Dynamic) HTML pages within a
client-browser without using Java applets or plug-ins. This allows
a web page to be periodically updated by the server. The browser
client uses JavaScript/Dynamic HTML features available in type 4+
browsers like NS and MSIE. The underlying mechanism uses a servlet
HTTP connection over which JavaScript code is pushed to the browser.
Through a single generic servlet (the Pushlet), browser clients can
subscribe to subjects from which they like to receive events. Whenever
the server pushes an event, the clients subscribed to the related subject
are notified. Event objects can be sent as either JavaScript (DHTML
clients), serialized Java objects (Java clients), or as XML (DHTML or
Java Clients).” [20]

The Dojo toolkit is a modular open source JavaScript toolkit (or li-
brary), designed to ease the rapid development of JavaScript- or Ajax-
based applications and web sites. It was started by Alex Russell in
2004 and is dual-licensed under the BSD License and the Academic
Free License. The Dojo Foundation is a non-profit organization de-



122 CHAPTER 4. WEB PUSH

signed to promote the adoption of the toolkit. [21]. Alex Rusell is the
responsible for the word Comet [5] and one of the people behind the
Bayeux Protocol [22] [12]

4.5.2 Server solutions

Grizzly is the HTTP server component for the new reference JavaEE
server Glassfish from Sun. A description of Grizzly from one of his
creators: ”Grizzly has been designed to work on top of the Apache
Tomcat Coyote HTTP Connector. The Coyote Connector is used in
Tomcat 3/4/5 and has proven to be a highly performant HTTP Con-
nector when it is time to measure raw throughput. But as other Java
based HTTP Connector, scalability is always limited to the number
of available threads, and when keep-alive is required, suffer the one
thread per connection paradigm. Because of this, scalability is most
of the time limited by the platform’s maximum thread number. To
solve this problem, people usually put Apache in front of Java, or use
a cluster to distribute requests among multiple Java server. Grizzly
differ from Coyote in two areas. First, Grizzly allow the pluggabil-
ity of any kind of thread pool (three are currently available in the
workspace). Second, Grizzly supports two modes: traditional IO and
non blocking IO.” [15]

Jetty is a 100% pure Java based HTTP Server and Servlet Con-
tainer. Jetty is released as an open source project under the Apache
2.0 License. Jetty is used by several other popular projects including
the JBoss and Geronimo Application Servers. This server was prob-
ably the first breaking the one thread per request mapping with it’s
Continuations [8] and provide a sort of Comet server framework before
even the concept was clear.

Apache Tomcat is a web container developed at the Apache Soft-
ware Foundation (ASF). Tomcat implements the servlet and the Java
Server Pages (JSP) specifications from Sun Microsystems, providing
an environment for Java code to run in cooperation with a web server.
It adds tools for configuration and management but can also be config-
ured by editing configuration files that are normally XML-formatted.
Tomcat includes its own internal HTTP server. Since version 6, Tom-
cat supports a NIO HTTP Connector and has native Comet support.



4.6. CONCLUSIONS 123

4.6 Conclusions

The Comet architecture allows to develop web applications based on
server sent events. Because of the nature of the HTTP specification
the only way to really have near real time event propagation from
client to server is keeping an open connection. We’ve seen this intro-
duces serious scalability problems on servers but they can be and are
being adressed using new models for processing requests based on non
blocking I/O systems.

There are currently production ready servers with support for asyn-
chronous request processing. There are multiple libraries supporting
Comet models and even a standard protocol (Bayeux) with some sup-
port behind it. So it’s safe to say Comet is ready for production and
actually it’s being actually used in several public web applications.

The Comet architecture represents another step into the evolution
of web application like AJAX has been on the last two years. In the
following years we will see a proliferation of AJAX and Comet enabled
web applications that will implement funcionality only available to
desktop applications today.

4.7 Future Trends

The gap between desktop applications and web applications is getting
small. Not also because there are the technical mechanism available
but also because people has started to think about web applications
and browser as the ultimate application framework. Is not unlikely
a future were most of the applications are web based and built upon
web standards [23]. Probably not the ones the current ones but an
evolution. That road would bring several challenges which will need
to be addressed.

In the middle of the nineties there was a boom coming from the
hardware and software major vendors about the thin clients, net clients
or NetPCs. It was a vision of things to come, but as many vision it
was too much ahead of time. Nowadays we can start talking about
the WebOS again, and think of the true mobility where you will have
all your desktop computing environment anywere there’s a Internet
connection. Most of us have already a web based email system which



124 CHAPTER 4. WEB PUSH

we can read from anywhere in the world (who hasn’t read email on
holiday on a very far and remote computer?). Google is one of the
pioneering companies behind products like GMail, Google Calendar
and Google Docs. Today you can have on the web the email, a calen-
dar, a word processor, a spreadsheet, an instant messenger, a music
player, a company files repository... all of the applications most com-
pany computers execute at the end of the day. Mobility is a demanded
requirement today as sales for laptop systems exced desktop systems.
The next step could be simplifying the laptops, making it smaller,
more durable, more usable and rely on the network for bringing the
applications.

This of course is still years ahead but there’s an important wind of
change on the industry and companies like Microsoft and Apple who
mostly rely on selling an operating system should start thinking in
other terms. The software bussines is also changing, and subscription
models are starting to become interesting on a world where someone
cares about the software, updates, storage of data, etc. Will the Win-
dowsOS be hosted on Microsoft server and billed for usage or monthly
rates?

What is clear is that the revolution is starting at the web appli-
cation level and the Comet architecture is just a single step on that
direction.

4.8 References / Further Reading

We’re listing some references with some examples and further readings
work which could be useful to complement this chapter. On [24] AJAX
is applied at the middleware level. Mesbah and Deurse [25] define an
architectural style for a single page AJAX model while Khare and
Taylor [26] propose an extension to the REST architectural style for
decentralized systems. Jacobi and Fallows [27] explore on a single
article the Comet architecture and Bayeux protocol.



Bibliography

[1] Jesse James Garrett. Ajax: A new approach to web applica-
tions, 2005. http://www.adaptivepath.com/publications/essays/

archives/000385.php.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol –
http/1.1. Internet RFCs, 1999. http://tools.ietf.org/html/

rfc2616.

[3] E.L. Specification. Standard ecma-262. ECMA Standardizing
Information and Communication Systems, 3, 1999.

[4] A. Le Hors, P. Le Hegaret, G. Nicol, J. Robie, M. Champion, and
S. Byrne. Document object model (dom) level 2 core specification
version 1.0. W3C Recommendation, 13, 2000.

[5] Alex Russell. Comet: low latency data for the browser, 2006.
http://alex.dojotoolkit.org/?p=545.

[6] Rohit Khare. Beyond ajax: Accelerating web applications with
real-time event notification, 8 2005. http://www.knownow.com/

products/docs/whitepapers/KN-Beyond-AJAX.pdf.

[7] Wikipedia page for comet. http://en.wikipedia.org/wiki/Comet_
%28programming%29.

[8] Greg Wilkins. Jetty 6.0 continuations - ajax ready!, 2005. http:

//web.archive.org/web/20060425031613/http://www.mortbay.

com/MB/log/gregw/?permalink=Jetty6Continuations.html.

125

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://alex.dojotoolkit.org/?p=545
http://www.knownow.com/products/docs/whitepapers/KN-Beyond-AJAX.pdf
http://www.knownow.com/products/docs/whitepapers/KN-Beyond-AJAX.pdf
http://en.wikipedia.org/wiki/Comet_%28programming%29
http://en.wikipedia.org/wiki/Comet_%28programming%29
http://web.archive.org/web/20060425031613/http://www.mortbay.com/MB/log/gregw/?permalink=Jetty6Continuations.html
http://web.archive.org/web/20060425031613/http://www.mortbay.com/MB/log/gregw/?permalink=Jetty6Continuations.html
http://web.archive.org/web/20060425031613/http://www.mortbay.com/MB/log/gregw/?permalink=Jetty6Continuations.html


126 BIBLIOGRAPHY

[9] Jean-Francois Arcand. New adventures in comet: polling, long
polling or http streaming with ajax. which one to choose?,
2007. http://weblogs.java.net/blog/jfarcand/archive/2007/05/

new_adventures.html.

[10] Giuseppe Naccarato. Introducing nonblocking sockets, 2002.
http://www.onjava.com/pub/a/onjava/2002/09/04/nio.html.

[11] Nuno Santos. Building highly scalable servers with java nio, 2004.
http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html.

[12] Greg Wilkins Alex Russel, David Davis and Mark Nesbitt.
Bayeux: A json protocol for publish/subscribe event delivery,
2007. http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.

html.

[13] Web apps 1 / html 5, 2007. Server sent events specifica-
tion http://www.whatwg.org/specs/web-apps/current-work/

#server-sent-events.

[14] Jean-Francois Arcand. Grizzly part iii: Asynchronous request
processing (arp), 2006. http://weblogs.java.net/blog/jfarcand/

archive/2006/02/grizzly_part_ii.html.

[15] Jean-Francois Arcand. Grizzly: An http listener using java
technology nio, 2005. http://weblogs.java.net/blog/jfarcand/

archive/2005/06/grizzly_an_http.html.

[16] Http streaming. http://ajaxpatterns.org/HTTP_Streaming.

[17] Youri op’t Roodt. The effect of ajax on performance and usability
in web environments, 8 2006. http://homepages.cwi.nl/~paulk/

thesesMasterSoftwareEngineering/2006/YouriOpTRoodt.pdf.

[18] Jean-Francois Arcand. Can a grizzly run faster than a coyote?,
2006. http://weblogs.java.net/blog/jfarcand/archive/2006/03/

can_a_grizzly_r.html.

[19] Michael Mahemoff. 210 ajax frameworks and count-
ing. ajaxian.com, 2007. http://ajaxian.com/archives/

210-ajax-frameworks-and-counting.

http://weblogs.java.net/blog/jfarcand/archive/2007/05/new_adventures.html
http://weblogs.java.net/blog/jfarcand/archive/2007/05/new_adventures.html
http://www.onjava.com/pub/a/onjava/2002/09/04/nio.html
http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://www.whatwg.org/specs/web-apps/current-work/#server-sent-events
http://www.whatwg.org/specs/web-apps/current-work/#server-sent-events
http://weblogs.java.net/blog/jfarcand/archive/2006/02/grizzly_part_ii.html
http://weblogs.java.net/blog/jfarcand/archive/2006/02/grizzly_part_ii.html
http://weblogs.java.net/blog/jfarcand/archive/2005/06/grizzly_an_http.html
http://weblogs.java.net/blog/jfarcand/archive/2005/06/grizzly_an_http.html
http://ajaxpatterns.org/HTTP_Streaming
http://homepages.cwi.nl/~paulk/thesesMasterSoftwareEngineering/2006/YouriOpTRoodt.pdf
http://homepages.cwi.nl/~paulk/thesesMasterSoftwareEngineering/2006/YouriOpTRoodt.pdf
http://weblogs.java.net/blog/jfarcand/archive/2006/03/can_a_grizzly_r.html
http://weblogs.java.net/blog/jfarcand/archive/2006/03/can_a_grizzly_r.html
http://ajaxian.com/archives/210-ajax-frameworks-and-counting
http://ajaxian.com/archives/210-ajax-frameworks-and-counting


BIBLIOGRAPHY 127

[20] Just van den Broecke. Pushlets - whitepaper, 8 2002. http:

//www.pushlets.com/doc/whitepaper-all.html.

[21] Dojo toolkit. http://en.wikipedia.org/wiki/Dojo_Toolkit.

[22] Alex Russell. Cometd, bayeux, and why they’re different, 2006.
http://alex.dojotoolkit.org/?p=573.

[23] Aaron Weiss. Webos: say goodbye to desktop applications, net-
worker 9, 4 (dec. 2005). netWorker, 9(4):18–26, 2005.

[24] John Stamey and Trent Richardson. Middleware development
with ajax. J. Comput. Small Coll., 22(2):281–287, 2006.

[25] Ali Mesbah and Arie van Deursen. An architectural style for ajax.
wicsa, 0:9, 2007.

[26] R. Khare and RN Taylor. Extending the representational state
transfer (rest) architectural style for decentralized systems. Soft-
ware Engineering, 2004. ICSE 2004. Proceedings. 26th Interna-
tional Conference on, pages 428–437, 2004.

[27] Jonas Jacobi and John Fallows. Enterprise comet: Awaken the
grizzly!, 2006. http://java.sys-con.com/read/327914_1.htm.

http://www.pushlets.com/doc/whitepaper-all.html
http://www.pushlets.com/doc/whitepaper-all.html
http://en.wikipedia.org/wiki/Dojo_Toolkit
http://alex.dojotoolkit.org/?p=573
http://java.sys-con.com/read/327914_1.htm

